Ginsenoside fractions regulate the action of monocytes and their differentiation into dendritic cells
نویسندگان
چکیده
BACKGROUND Panax ginseng (i.e., ginseng) root is extensively used in traditional oriental medicine. It is a modern pharmaceutical reagent for preventing various human diseases such as cancer. Ginsenosides-the major active components of ginseng-exhibit immunomodulatory effects. However, the mechanism and function underlying such effects are not fully elucidated, especially in human monocytes and dendritic cells (DCs). METHODS We investigated the immunomodulatory effect of ginsenosides from Panax ginseng root on CD14(+) monocytes purified from human adult peripheral blood mononuclear cells (PBMCs) and on their differentiation into DCs that affect CD4(+) T cell activity. RESULTS After treatment with ginsenoside fractions, monocyte levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 increased through phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein kinase (MAPK). After treatment with ginsenoside fractions, TNF-α production and phosphorylation of ERK1/2 and JNK decreased in lipopolysaccharide (LPS)-sensitized monocytes. We confirmed that DCs derived from CD14(+) monocytes in the presence of ginsenoside fractions (Gin-DCs) contained decreased levels of the costimulatory molecules CD80 and CD86. The expression of these costimulatory molecules decreased in LPS-treated DCs exposed to ginsenoside fractions, compared to their expression in LPS-treated DCs in the absence of ginsenoside fractions. Furthermore, LPS-treated Gin-DCs could not induce proliferation and interferon gamma (IFN-γ) production by CD4(+) T cells with the coculture of Gin-DCs with CD4+ T cells. CONCLUSION These results suggest that ginsenoside fractions from the ginseng root suppress cytokine production and maturation of LPS-treated DCs and downregulate CD4(+) T cells.
منابع مشابه
DIFFERENTIATION OF MONOCYTE DERIVED DENDRITIC CELLS IN SERUM FREE CONDITIONS
Human peripheral blood monocytes (HPBM) were cultured in the absence of human serum and were converted into a state exhibiting a high accessory function expressed by their ability of supporting lymphocyte proliferation. After a prolonged culture in serum free media the monocyte derived cells were highly viable, increased in size and developed veils and dendritiform elongatio'l1s. Paralleli...
متن کاملEffect of Epigallocatechin gallate (EGCG) on Production of Dendritic Cells from Peripheral Blood Monocytes
Background and purpose: Dendritic cells are professional antigen presenting cells that initiate and modulate immune responses. Epigallocatechin gallate (EGCG) is identified as a prophylactic agent that can suppress tumor formation. This research aimed at investigating the effect of EGCG on differentiation of dendritic cells from monocytes and as a potential substitute for IL-4 in this process. ...
متن کاملPhenotypic and Functional Comparison between Flask Adherent and Magnetic Activated Cell Sorted Monocytes Derived Dendritic Cells
Background: Generation of an effective dendritic cell (DC) based cancer vaccine depends on appropriate differentiation of monocytes in vitro. Objective: To compare the effects of monocyte separation methods, flask adherence (Flask-DC) and magnetic activated cell sorting (MACS-DC), on phenotypic and functional characteristics of resultant DCs. Methods: DCs from healthy volunteers were generated ...
متن کاملComparison of Several Maturation Inducing Factors in Dendritic Cell Differentiation
Background: Dendritic cells (DCs) are professional antigen presenting cells that have an important role in the initiation of immune response. The use of maturation factors in dendritic cell differentiation provides a promising approach in immunotherapy. Objective: In this study, we compared tumor necrosis factor-α, polyribocytidylic acid, lipopolysacharide and CpG oligonucleotides in inducing d...
متن کاملتمایز سلولهای دندریتیک مشتق از مونوسیت بر روی لایهای از سلولهای اندوتلیال بهعنوان لایه تغذیهکننده
Background: The innate and adaptive immune responses are dependent on the migration of leukocytes across endothelial cells. Dendritic cells (DCs) play an important role in the initiation of cellular immune responses during their migration from tissues into the lymph nodes where they interact with endothelial cells of lymphatic vessels. We investigated the effect...
متن کامل